Bluejacking

ABSTRACT

Bluejacking is the sending of unsolicited messages over Bluetooth to Bluetooth-enabled devices such as mobile phones, PDAs or laptop computers, sending a vCard which typically contains a message in the name field (i.e. for bluedating or bluechat) to another Bluetooth enabled device via the OBEX protocol. Bluetooth has a very limited range; usually around 10 meters on mobile phones, but laptops can reach up to 100 meters with powerful transmitters.

Bluejacking allows phone users to send business cards anonymously using Bluetooth wireless technology. Bluejacking does not involve the removal or alteration of any data from the device. Bluejackers often look for the receiving phone to ping or the user to react. In order to carry out a bluejacking, the sending and receiving devices must be within 10 meters of one another. Phone owners who receive bluejack messages should refuse to add the contacts to their address book. Devices that are set in non-discoverable mode are not susceptible to bluejacking.

Mobile phones have been adopted as an everyday technology, and they are ubiquitous in social situations as users carry them around as they move through different physical locations throughout the day. As a communicative device, the mobile phone has been gradually taken up in ways that move beyond merely providing a channel for mediated conversation. One such appropriation is bluejacking, the practice of sending short, unsolicited messages via vCard functionality to other Bluetooth-enabled phones. To choose the recipients of bluejacks, senders complete a scan using their mobile phones to search for the available Bluetooth-enabled devices in the immediate area. A bluejacker picks one of the available devices, composes a message within a body of the phone’s contact interface, sends the message to the recipient, and remains in the vicinity to observe any reactions expressed by the recipient.

If you are interested in this seminar topic, Click here to know 
how to get the full report. * conditions apply

NANOSCALE MATERIALS AND DEVICES FOR FUTURE COMMUNICATION NETWORKS

ABSTRACT

New discoveries in materials on the nanometer-length scale are expected to play an important role in addressing ongoing and future challenges in the field of communication. Devices and systems for ultra-high-speed short-and long-range communication links, portable and power-efficient computing devices, high-density memory and logics, ultra-fast interconnects, and autonomous and robust energy scavenging devices for accessing ambient intelligence and needed information will critically depend on the success of next-generation emerging nanomaterials and devices. This seminar presents some exciting recent developments in nanomaterials that have the potential to play a critical role in the development and transformation of future intelligent communication networks.

If you are interested in this seminar topic, Click here to know
how to get the full report. * conditions apply

Confidential Data Storage and Deletion

ABSTRACT

With the decrease in cost of electronic storage media, more and more sensitive data gets stored in those media. Laptop computers regularly go missing, either because they are lost or because they are stolen. These laptops contain confidential information, in the form of documents, presentations, emails, cached data, and network access credentials. This confidential information is typically far more valuable than the laptop hardware, if it reaches right people. There are two major aspects to safeguard the privacy of data on these storage media/laptops. First, data must be stored in a confidential manner. Second, we must make sure that confidential data once deleted can no longer be restored. Various methods exist to store confidential data such as encryption programs, encryption file system etc. Microsoft BitLocker Drive Encryption provides encryption for hard disk volume and is available with Windows Vista Ultimate and Enterprise editions.

This seminar describes the most commonly used encryption algorithm, Advanced Encryption System (AES) which is used for many of the confidential data storage methods. This seminar also describes some of the confidential data erasure methods such as physical destruction, data overwriting methods and Key erasure.

If you are interested in this seminar topic, Click here to know
how to get the full report. * conditions apply

Co-operative Linux

ABSTRACT

This seminar describes Cooperative Linux, a port of the Linux kernel that allows it to run as an unprivileged lightweight virtual machine in kernel mode, on top of another OS kernel. It allows Linux to run under any operating system that supports loading drivers, such as Windows or Linux, after minimal porting efforts. The paper includes the present and future implementation details, its applications, and its comparison with other Linux virtualization methods. Among the technical details, it also presents the CPU-complete context switch code, hardware interrupt forwarding, the interface between the host OS and Linux, and the management of the VM‘s pseudo physical RAM.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Emotional Annotation of Text

ABSTRACT

Emotion is at the core of understanding ourselves and others, and the automatic expression and detection of emotion could enhance our experience with technologies. Emotion analysis is a rapidly developing area in computational linguistics. With the advent of affective computing, the task of adequately identifying, representing and processing the emotional connotations of text has acquired importance. This seminar concentrates on how the emotion of the text is annotated. The emotion of a sentence of text should be derived by composition of the emotions of the words in the sentence. Existing approaches to this task rely most often on a simplified representation of the sentence as a bag of words, where all words contribute in equal measure. However, intuitively certain words can probably be considered more significant; depending on the role they play in the word from their syntactic or semantic structure. Of the various existing approaches for representing emotions, some are better suited for some problems and some for others. In this seminar I am focusing on the various problems and the technologies used to implement the same and how the emotional annotation of a text is done by ontological reasoning.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Touch Screens With Feelings

ABSTRACT

This seminar includes the theory, design and construction of a haptic display for creating texture sensations through variations in surface friction. Ultra sonic frequency, low amplitude vibrations between two flat plates have been shown to create a squeeze film of air between the two plate surfaces thereby reducing the friction. Here, it is shown that a reduction of friction will also occur between a human finger and a vibrating plate. Thus, a vibrating plate can serve as a haptic interface. The amplitude of vibration can also be correlated to the amount of friction reduction the plate and the finger. Varying the surface friction between the finger and the haptic interface is a way of indirectly controlling shear forces on the finger during active exploration. Using finger position and velocity feedback on the display allows for the creation of spatial texture sensations.

If you are interested in this seminar topic, Click here to know
how to get the full report. * conditions apply

Femtocells Technology

ABSTRACT

      Femtocells, a technology little-known outside the wireless world, promise better indoor cellular service. In telecommunication, a Femtocell is a small cellular base station, typically designed for use in a home or small business. It connects to the service provider’s network via broadband. Current designs typically support 2 to 4 active mobile phones in a residential setting, and 8 to 16 active mobile phones in enterprise settings. A Femtocell allows service providers to extend service coverage indoors, especially where access would otherwise be limited or unavailable. For a mobile operator, the attractions of a Femtocell are improvements to both coverage and capacity, especially indoors. This can reduce both capital expenditure and operating expense.

      A Femtocell is typically the size of a residential gateway or smaller, and connects into the end-user’s broadband line. Once plugged in, the Femtocell connects to the MNO’s mobile network, and provides extra coverage in a range of typically 30 to 50 meters for residential Femtocells.

      The end-user must declare which mobile phone numbers are allowed to connect to his/her Femtocell, usually via a web interface provided by the MNO. When these mobile phones arrive under coverage of the Femtocell, they switch over from the Macrocell (outdoor) to the Femtocell automatically. Most MNOs provide means for the end-user to know this has happened, for example by having a different network name appear on the mobile phone. All communications will then automatically go through the Femtocell. When the end-user leaves the Femtocell coverage (whether in a call or not), his phone hands over seamlessly to the macro network.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

  • © 2008 – 2013 seminars4you,

Follow

Get every new post delivered to your Inbox.

Join 1,339 other followers