Emotional Annotation of Text

ABSTRACT

Emotion is at the core of understanding ourselves and others, and the automatic expression and detection of emotion could enhance our experience with technologies. Emotion analysis is a rapidly developing area in computational linguistics. With the advent of affective computing, the task of adequately identifying, representing and processing the emotional connotations of text has acquired importance. This seminar concentrates on how the emotion of the text is annotated. The emotion of a sentence of text should be derived by composition of the emotions of the words in the sentence. Existing approaches to this task rely most often on a simplified representation of the sentence as a bag of words, where all words contribute in equal measure. However, intuitively certain words can probably be considered more significant; depending on the role they play in the word from their syntactic or semantic structure. Of the various existing approaches for representing emotions, some are better suited for some problems and some for others. In this seminar I am focusing on the various problems and the technologies used to implement the same and how the emotional annotation of a text is done by ontological reasoning.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Heliodisplay

ABSTRACT

The Heliodisplay is a free-space display developed by IO2 Technology. A projector is focused onto a layer of mist in mid-air, resulting in a two-dimensional display that appears to float. This is similar in principle to the cinematic technique of rear projection. As dark areas of the image may appear invisible, the image may be more realistic than on a projection screen, although it is still not volumetric. Looking directly at the display, one would also be looking into the projector’s light source. The necessity of an oblique viewing angle (to avoid looking into the projector’s light source) may be a disadvantage. Heliodisplay can work as a free-space touchscreen when connected to a PC by a USB cable. A PC sees the Heliodisplay as a pointing device, like a mouse. With the supplied software installed, one can use a finger, pen, or another object as cursor control and navigate or interact with simple content. The mist is formed by a series of metal plates, and the original Heliodisplay could run for several hours on one litre of tap water. 2008 model Heliodisplays use 80 mml to 120 ml of water per hour, depending on screen size and user settings, and can be built with any size water tank. The Heliodisplay was invented by Chad Dyner, who built it as a five-inch prototype in his apartment before patenting the free-space display technology, and founding IO2 Technology LLC to further develop the product.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.
 Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Issues of Routing IN VANET

ABSTRACT

Vehicular Ad Hoc Network (VANET) is a sub class of mobile ad hoc networks. VANET provides wireless communication among vehicles and vehicle to road side equipments. The communication between vehicles is used for safety, comfort and for entertainment as well. The performance of communication depends on how better the routing takes place in the network. Routing of data depends on the routing protocols being used in network. In this study different ad hoc routing protocols for VANET are studied. The main aim of this study is to identify which ad hoc routing method has better performance in highly mobile environment of VANET. To measure the performance of routing protocols in VANET, two different scenarios i.e. city and highway are considered. Routing protocols were selected carefully after carrying out literature review. The selected protocols were then evaluated through simulation in terms of performance metrics i.e. throughput and packet drop. After simulation results, MATLAB can be used to plot the graph to compare the results of selected routing protocols with each other.

From the results, it is observed that A-STAR shows better performance in terms of high throughput and low packet drop as compared to AODV and GPSR in city environment, while GPSR shows better performance as compared to AODV in both highway and city environment of VANET. Based on the results of performance metrics in different environments of VANET, it is realized that position based routing method of VANET outperformed the traditional ad hoc topology based routing. In VANET the protocol performance depends on vehicle speed, driving environment etc. that may vary from one environment of network to another.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Wearable Health Care System on Textile Platform

ABSTRACT

A comfortable health monitoring system is based on a wearable interface implemented by integrating fabric sensors, advanced signal processing techniques and modern telecommunication systems, on a textile platform. Conducting and piezoresistive materials in form of fiber and yarn are integrated in a garment and used as sensors, connectors and electrode elements. Simultaneous recording of vital signs allows extrapolation of more complex parameters and inter-signal elaboration that contribute to produce alert message and synoptic patient table. The system is designed to be minimally invasive, comfortable and wearable, where the knitted fabric sensors and electrodes are distributed and connected to an electronic portable unit, the acquired signals can then be transmitted to a monitoring system.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Femtocells Technology

ABSTRACT

      Femtocells, a technology little-known outside the wireless world, promise better indoor cellular service. In telecommunication, a Femtocell is a small cellular base station, typically designed for use in a home or small business. It connects to the service provider’s network via broadband. Current designs typically support 2 to 4 active mobile phones in a residential setting, and 8 to 16 active mobile phones in enterprise settings. A Femtocell allows service providers to extend service coverage indoors, especially where access would otherwise be limited or unavailable. For a mobile operator, the attractions of a Femtocell are improvements to both coverage and capacity, especially indoors. This can reduce both capital expenditure and operating expense.

      A Femtocell is typically the size of a residential gateway or smaller, and connects into the end-user’s broadband line. Once plugged in, the Femtocell connects to the MNO’s mobile network, and provides extra coverage in a range of typically 30 to 50 meters for residential Femtocells.

      The end-user must declare which mobile phone numbers are allowed to connect to his/her Femtocell, usually via a web interface provided by the MNO. When these mobile phones arrive under coverage of the Femtocell, they switch over from the Macrocell (outdoor) to the Femtocell automatically. Most MNOs provide means for the end-user to know this has happened, for example by having a different network name appear on the mobile phone. All communications will then automatically go through the Femtocell. When the end-user leaves the Femtocell coverage (whether in a call or not), his phone hands over seamlessly to the macro network.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Fluorescent Multilayer Disc (FMD)

ABSTRACT

Compact discs were a revolutionary product at its time and influenced many spheres of human activity. People started recording music of high quality, which didn’t get worse with the time as it happens to be on tape. As soon as CDs appeared in computer industry they immediately became an undoubted helper both for users and for programmers. The latter were able to increase volume of their program products by adding video and audio elements etc. Later discs were used for digital video (VideoCD).

But technologies are progressing. Data are growing faster and faster. A usual CD is far not enough (640 MBytes). So, there appeared DVD technology. Of course we are happy with those 17 GBytes that can be kept on one DVD disc, but this is a limiting point. So we need a completely new method of storing information on portable data medium. And at last, the company Constellation 3D demonstrates a new format: FMD (Fluorescent Multilayer Disk), which can provide us with a staggering 140 GB of storage space seems to be an enticing solution for the storage-hungry masses.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Unified Theory of Electrification in Natural Processes

ABSTRACT

Electrification in natural processes is explained by photochemical reactions initiated by electromagnetic (EM) radiation induced in nanoparticles (NPs) by quantum electrodynamics (QED). The NPs ubiquitous to natural processes produce EM radiation depending on the thermal kT of atoms that at ambient temperature is emitted in the far infrared (FIR). However, EM radiation at vacuum ultraviolet (VUV) levels is required to initiate photochemical reactions, and therefore a mechanism is required to increase the frequency from the FIR to VUV levels – the mechanism called QED induced EM radiation. How the NPs form depends on the specific natural process, but all processes are unified by the VUV radiation induced in NPs by QED. For example, static electricity comprising positive and negative charges is produced from VUV induced in NPs that form in the rubbing of dissimilar solids, atmospheric electricity is produced by hydronium and hydroxyl ions from VUV induced in ice NPs as water vapor freezes at high altitudes, and flow electricity is produced by cations and electrons from VUV induced in NPs that form as clusters in turbulence. Prior applications of QED induced EM radiation were based on the EM confinement of FIR radiation in nanovoids (NVs) – bubbles in liquids and gaps in solids. But difficulties with NVs in this regard led to the conclusion that NPs whether liquid or solid are the most likely EM confinement of FIR radiation in natural processes. Compared to NVs, NPs assure EM confinement of FIR radiation to allow frequency up-conversion to VUV levels. Electrification first occurs at the instant the NPs form as the thermal kT energy of the atoms forming the NP is released in a burst of VUV radiation. Steady VUV is then produced as the NP recovers the thermal kT energy lost in the burst from blackbody (BB) radiation in the ambient surroundings. Either way, FIR radiation from the atoms within the NP is suppressed by QED because the FIR frequency is lower than the EM confinement frequency of NPs. To conserve EM energy, QED requires the kT energy loss corresponding to the suppressed IR radiation to be gained at the EM confinement frequency of the NP – typically in the VUV. In this way, the NPs produce the VUV radiation that by photochemical reaction with chemical species to produce charge in natural processes.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

  • © 2008 – 2013 seminars4you,

Follow

Get every new post delivered to your Inbox.

Join 1,354 other followers