Emotional Annotation of Text

ABSTRACT

Emotion is at the core of understanding ourselves and others, and the automatic expression and detection of emotion could enhance our experience with technologies. Emotion analysis is a rapidly developing area in computational linguistics. With the advent of affective computing, the task of adequately identifying, representing and processing the emotional connotations of text has acquired importance. This seminar concentrates on how the emotion of the text is annotated. The emotion of a sentence of text should be derived by composition of the emotions of the words in the sentence. Existing approaches to this task rely most often on a simplified representation of the sentence as a bag of words, where all words contribute in equal measure. However, intuitively certain words can probably be considered more significant; depending on the role they play in the word from their syntactic or semantic structure. Of the various existing approaches for representing emotions, some are better suited for some problems and some for others. In this seminar I am focusing on the various problems and the technologies used to implement the same and how the emotional annotation of a text is done by ontological reasoning.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Wearable Health Care System on Textile Platform

ABSTRACT

A comfortable health monitoring system is based on a wearable interface implemented by integrating fabric sensors, advanced signal processing techniques and modern telecommunication systems, on a textile platform. Conducting and piezoresistive materials in form of fiber and yarn are integrated in a garment and used as sensors, connectors and electrode elements. Simultaneous recording of vital signs allows extrapolation of more complex parameters and inter-signal elaboration that contribute to produce alert message and synoptic patient table. The system is designed to be minimally invasive, comfortable and wearable, where the knitted fabric sensors and electrodes are distributed and connected to an electronic portable unit, the acquired signals can then be transmitted to a monitoring system.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Femtocells Technology

ABSTRACT

      Femtocells, a technology little-known outside the wireless world, promise better indoor cellular service. In telecommunication, a Femtocell is a small cellular base station, typically designed for use in a home or small business. It connects to the service provider’s network via broadband. Current designs typically support 2 to 4 active mobile phones in a residential setting, and 8 to 16 active mobile phones in enterprise settings. A Femtocell allows service providers to extend service coverage indoors, especially where access would otherwise be limited or unavailable. For a mobile operator, the attractions of a Femtocell are improvements to both coverage and capacity, especially indoors. This can reduce both capital expenditure and operating expense.

      A Femtocell is typically the size of a residential gateway or smaller, and connects into the end-user’s broadband line. Once plugged in, the Femtocell connects to the MNO’s mobile network, and provides extra coverage in a range of typically 30 to 50 meters for residential Femtocells.

      The end-user must declare which mobile phone numbers are allowed to connect to his/her Femtocell, usually via a web interface provided by the MNO. When these mobile phones arrive under coverage of the Femtocell, they switch over from the Macrocell (outdoor) to the Femtocell automatically. Most MNOs provide means for the end-user to know this has happened, for example by having a different network name appear on the mobile phone. All communications will then automatically go through the Femtocell. When the end-user leaves the Femtocell coverage (whether in a call or not), his phone hands over seamlessly to the macro network.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Haptics

ABSTRACT

‘Haptics’ is a technology that adds the sense of touch to virtual environments. Users are given the illusion that they are touching or manipulating a real physical object.
This seminar discusses the important concepts in haptics, some of the most commonly used haptics systems like ‘Phantom’, ‘Cyberglove’, ‘Novint Falcon’ and such similar devices. Following this, a description about how sensors and actuators are used for tracking the position and movement of the haptic systems, is provided.
The different types of force rendering algorithms are discussed next. The seminar explains the blocks in force rendering. Then a few applications of haptic systems are taken up for discussion.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Impedance Glottography

ABSTRACT

Impedance Glottography is noninvasive measurement of the time variation of the degree of contact between the vibrating vocal folds during voice production. The aspect of contact being measured is called the vocal fold contact area (VFCA). To measure VFCA, the device used is called impedance glottograph. The device is also called electroglottograph or laryngograph. The principle of operation of device, the waveform obtained, an algorithm for determination of pitch period is discussed. EGG waveform for various voice qualities, drawbacks in EGG and various noises present are described. Concept of multichannel EGG and applications of electroglottography are discussed.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Rover technology

ABSTRACT

Location-aware computing involves the automatic tailoring of information and services based on the current location of the user. We have designed and implemented Rover, a system that enables location-based services, as well as the traditional time-aware, user-aware and device-aware services. To achieve system scalability to very large client sets, Rover servers are implemented in an “action-based” concurrent software architecture that enables fine-grained application-specific scheduling of tasks. We have demonstrated feasibility through implementations for both outdoor and indoor environments on multiple platforms. The intriguing aspect of this scenario is the automatic tailoring of information and services based on the current location of the user. We refer to this paradigm as location-aware computing.

The different technology components needed to realize location-aware computing are present today, powered by the increasing capabilities of mobile personal computing devices and the increasing deployment of wireless connectivity (IEEE 802.11 wireless LANs [7], Bluetooth [1], Infra-red [2], Cellular services, etc.). Location-aware, in addition to the more traditional notions of time-aware, user-aware, and device-aware. Rover has a location service that can track the location of every user, either by automated location determination technology (for example, using signal strength or time difference) or by the user manually entering current location (for example, by clicking on a map).

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Embedded OS for Real-Time Applications

ABSTRACT

The advent of microprocessors has opened up several product opportunities that simply did not exist earlier. These intelligent processors have invaded and embedded themselves into all fields of our lives be it the kitchen (food processors, microwave ovens), the living rooms (televisions, air conditioners) or the work places (fax machines, pagers, laser printer, credit card readers) …etc.

As the complexities in the embedded applications increase, use of an operating system brings in lot of advantages. Most embedded systems also have real-time requirements demanding the use of Real time Operating Systems (RTOS) capable of meeting the embedded system requirements. Real-time Operating System allows realtime applications to be designed and expanded easily. The use of an RTOS simplifies the design process by splitting the application code into separate tasks. An RTOS allows one to make better use of the system recourses by providing with valuable services such as semaphores, mailboxes, queues, time delays, time outs…etc.

This report looks at the basic concepts of embedded systems, operating systems and specifically at Real Time Operating Systems in order to identify the features one has to look for in an RTOS before it is used in a real-time embedded application. Some of the popular RTOS have been discussed in brief, giving their salient features, which make them suitable for different applications.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

  • © 2008 – 2013 seminars4you,

Follow

Get every new post delivered to your Inbox.

Join 1,354 other followers