NANOSCALE MATERIALS AND DEVICES FOR FUTURE COMMUNICATION NETWORKS

ABSTRACT

New discoveries in materials on the nanometer-length scale are expected to play an important role in addressing ongoing and future challenges in the field of communication. Devices and systems for ultra-high-speed short-and long-range communication links, portable and power-efficient computing devices, high-density memory and logics, ultra-fast interconnects, and autonomous and robust energy scavenging devices for accessing ambient intelligence and needed information will critically depend on the success of next-generation emerging nanomaterials and devices. This seminar presents some exciting recent developments in nanomaterials that have the potential to play a critical role in the development and transformation of future intelligent communication networks.

If you are interested in this seminar topic, Click here to know
how to get the full report. * conditions apply

Nokia Morph Technology

ABSTRACT

In business a product could have a shorter life if it can’t win the hearts of people and showcase new technology, so Nokia is coming up with the Nokia Morph flexible mobile phone which the company claims include nanotechnology and would immensely benefit its end-users. The main benefit of Nanotechnology is that its components are flexible, transparent and extremely strong. The company believes this latest technology would be a distinctive phone by 2015, but a few technical glitches remain to be solved, like the use of new battery materials etc.

Nokia morph is a joint technology concept, developed by Nokia Research Center (NRC) and the University of Cambridge (UK). The morph demonstrate how future mobile device might be stretchable and flexible, allowing the user to transform their mobile devices into radically different shaped. It demonstrates the ultimately that nanotechnology might be capable of delivering: flexible material, transparent electronics and self-cleaning surface. Fibril proteins are woven into three dimensional meshes that reinforce thin elastic structures. Using the same principle behind spider silk, this elasticity enables the device to literally changes shapes and configure itself to adapt to the task at hand.

If you are interested in this seminar topic, Click here to know
how to get the full report. * conditions apply

Issues of Routing IN VANET

ABSTRACT

Vehicular Ad Hoc Network (VANET) is a sub class of mobile ad hoc networks. VANET provides wireless communication among vehicles and vehicle to road side equipments. The communication between vehicles is used for safety, comfort and for entertainment as well. The performance of communication depends on how better the routing takes place in the network. Routing of data depends on the routing protocols being used in network. In this study different ad hoc routing protocols for VANET are studied. The main aim of this study is to identify which ad hoc routing method has better performance in highly mobile environment of VANET. To measure the performance of routing protocols in VANET, two different scenarios i.e. city and highway are considered. Routing protocols were selected carefully after carrying out literature review. The selected protocols were then evaluated through simulation in terms of performance metrics i.e. throughput and packet drop. After simulation results, MATLAB can be used to plot the graph to compare the results of selected routing protocols with each other.

From the results, it is observed that A-STAR shows better performance in terms of high throughput and low packet drop as compared to AODV and GPSR in city environment, while GPSR shows better performance as compared to AODV in both highway and city environment of VANET. Based on the results of performance metrics in different environments of VANET, it is realized that position based routing method of VANET outperformed the traditional ad hoc topology based routing. In VANET the protocol performance depends on vehicle speed, driving environment etc. that may vary from one environment of network to another.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Wearable Health Care System on Textile Platform

ABSTRACT

A comfortable health monitoring system is based on a wearable interface implemented by integrating fabric sensors, advanced signal processing techniques and modern telecommunication systems, on a textile platform. Conducting and piezoresistive materials in form of fiber and yarn are integrated in a garment and used as sensors, connectors and electrode elements. Simultaneous recording of vital signs allows extrapolation of more complex parameters and inter-signal elaboration that contribute to produce alert message and synoptic patient table. The system is designed to be minimally invasive, comfortable and wearable, where the knitted fabric sensors and electrodes are distributed and connected to an electronic portable unit, the acquired signals can then be transmitted to a monitoring system.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

APPLE – A Novel Approach for Direct Energy Weapon Control

ABSTRACT

Adaptive photonic based phase locked elements (APPLE) is Raytheon’s DARPA development initiative. The initiative is for development of a directed energy weapon that utilizes a beam combining technique for the achievement of high power. It will integrate the laser enabled weapon applications into unmanned aerial vehicles. The APPLE program is to enable all electronic combining of high-power laser engraver beams within an agile, conformal aperture-a practical approach to synthesizing high-power weapon laser engravers from low-power modules for applications such as laser radar, laser target designation, laser communications, and weapons grade lasers. The idea is to provide electro-optical systems with the same mission flexibility and performance that microwave phased arrays provide for RF applications such as radar and electronic warfare systems.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Fluorescent Multilayer Disc (FMD)

ABSTRACT

Compact discs were a revolutionary product at its time and influenced many spheres of human activity. People started recording music of high quality, which didn’t get worse with the time as it happens to be on tape. As soon as CDs appeared in computer industry they immediately became an undoubted helper both for users and for programmers. The latter were able to increase volume of their program products by adding video and audio elements etc. Later discs were used for digital video (VideoCD).

But technologies are progressing. Data are growing faster and faster. A usual CD is far not enough (640 MBytes). So, there appeared DVD technology. Of course we are happy with those 17 GBytes that can be kept on one DVD disc, but this is a limiting point. So we need a completely new method of storing information on portable data medium. And at last, the company Constellation 3D demonstrates a new format: FMD (Fluorescent Multilayer Disk), which can provide us with a staggering 140 GB of storage space seems to be an enticing solution for the storage-hungry masses.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Unified Theory of Electrification in Natural Processes

ABSTRACT

Electrification in natural processes is explained by photochemical reactions initiated by electromagnetic (EM) radiation induced in nanoparticles (NPs) by quantum electrodynamics (QED). The NPs ubiquitous to natural processes produce EM radiation depending on the thermal kT of atoms that at ambient temperature is emitted in the far infrared (FIR). However, EM radiation at vacuum ultraviolet (VUV) levels is required to initiate photochemical reactions, and therefore a mechanism is required to increase the frequency from the FIR to VUV levels – the mechanism called QED induced EM radiation. How the NPs form depends on the specific natural process, but all processes are unified by the VUV radiation induced in NPs by QED. For example, static electricity comprising positive and negative charges is produced from VUV induced in NPs that form in the rubbing of dissimilar solids, atmospheric electricity is produced by hydronium and hydroxyl ions from VUV induced in ice NPs as water vapor freezes at high altitudes, and flow electricity is produced by cations and electrons from VUV induced in NPs that form as clusters in turbulence. Prior applications of QED induced EM radiation were based on the EM confinement of FIR radiation in nanovoids (NVs) – bubbles in liquids and gaps in solids. But difficulties with NVs in this regard led to the conclusion that NPs whether liquid or solid are the most likely EM confinement of FIR radiation in natural processes. Compared to NVs, NPs assure EM confinement of FIR radiation to allow frequency up-conversion to VUV levels. Electrification first occurs at the instant the NPs form as the thermal kT energy of the atoms forming the NP is released in a burst of VUV radiation. Steady VUV is then produced as the NP recovers the thermal kT energy lost in the burst from blackbody (BB) radiation in the ambient surroundings. Either way, FIR radiation from the atoms within the NP is suppressed by QED because the FIR frequency is lower than the EM confinement frequency of NPs. To conserve EM energy, QED requires the kT energy loss corresponding to the suppressed IR radiation to be gained at the EM confinement frequency of the NP – typically in the VUV. In this way, the NPs produce the VUV radiation that by photochemical reaction with chemical species to produce charge in natural processes.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

  • © 2008 – 2013 seminars4you,

Follow

Get every new post delivered to your Inbox.

Join 1,339 other followers