5G Mobile Technology

ABSTRACT

5G Technology stands for 5th Generation Mobile technology. 5G technologies will change the way most high-bandwidth users access their phones. With 5G pushed over a VOIP-enabled device, people will experience a level of call volume and data transmission never experienced before.5G technology is offering the services in Product Engineering, Documentation, supporting electronic transactions (e-Payments, e-transactions) etc. As the customer becomes more and more aware of the mobile phone technology, he or she will look for a decent package all together, including all the advanced features a cellular phone can have. Hence the search for new technology is always the main motive of the leading cell phone giants to out innovate their competitors. Recently apple has produced shivers all around the electronic world by launching its new handset, the I-phone. Features that are getting embedded in such a small piece of electronics are huge.

The 5G technologies include all type of advanced features which makes 5G mobile technology most powerful and in huge demand in near future. The gigantic array of innovative technology being built into new cell phones is stunning. 5G technology which is on hand held phone offering more power and features than at least 1000 lunar modules. A user can also hook their 5G technology cell phone with their Laptop to get broadband internet access. 5G technology including camera, MP3 recording, video player, large phone memory, dialing speed, audio player and much more you never imagine. For children rocking fun Bluetooth technology and Piconets has become in market.

If you are interested in this seminar topic, Click here to know
how to get the full report. * conditions apply

NANOSCALE MATERIALS AND DEVICES FOR FUTURE COMMUNICATION NETWORKS

ABSTRACT

New discoveries in materials on the nanometer-length scale are expected to play an important role in addressing ongoing and future challenges in the field of communication. Devices and systems for ultra-high-speed short-and long-range communication links, portable and power-efficient computing devices, high-density memory and logics, ultra-fast interconnects, and autonomous and robust energy scavenging devices for accessing ambient intelligence and needed information will critically depend on the success of next-generation emerging nanomaterials and devices. This seminar presents some exciting recent developments in nanomaterials that have the potential to play a critical role in the development and transformation of future intelligent communication networks.

If you are interested in this seminar topic, Click here to know
how to get the full report. * conditions apply

Nokia Morph Technology

ABSTRACT

In business a product could have a shorter life if it can’t win the hearts of people and showcase new technology, so Nokia is coming up with the Nokia Morph flexible mobile phone which the company claims include nanotechnology and would immensely benefit its end-users. The main benefit of Nanotechnology is that its components are flexible, transparent and extremely strong. The company believes this latest technology would be a distinctive phone by 2015, but a few technical glitches remain to be solved, like the use of new battery materials etc.

Nokia morph is a joint technology concept, developed by Nokia Research Center (NRC) and the University of Cambridge (UK). The morph demonstrate how future mobile device might be stretchable and flexible, allowing the user to transform their mobile devices into radically different shaped. It demonstrates the ultimately that nanotechnology might be capable of delivering: flexible material, transparent electronics and self-cleaning surface. Fibril proteins are woven into three dimensional meshes that reinforce thin elastic structures. Using the same principle behind spider silk, this elasticity enables the device to literally changes shapes and configure itself to adapt to the task at hand.

If you are interested in this seminar topic, Click here to know
how to get the full report. * conditions apply

Skinput

ABSTRACT

Skinput is an input technology that uses bio-acoustics sensing to localize finger taps on the skin. When augmented with a pico projector, the device can provide a direct manipulation, graphical user interface on the body. The technology was developed by Chris Harrison, Desney Tan and Dan Morris at Microsoft Research’s Computational User experience Group.

Skinput represents one way to decouple input from electronic devices with the aim of allowing devices to become smaller without simultaneously shrinking the surface area on which input can be performed. While other systems, like Sixth sense have attempted this with computer vision, Skinput employs acoustics, which take the advantage of the human body’s natural sound conductive properties. This allows the body to be annexed as an input surface without the need for the skin to be invasively instrumented with sensors, tracking, markers, or other items.

If you are interested in this seminar topic, Click here to know
how to get the full report. * conditions apply

Heliodisplay

ABSTRACT

The Heliodisplay is a free-space display developed by IO2 Technology. A projector is focused onto a layer of mist in mid-air, resulting in a two-dimensional display that appears to float. This is similar in principle to the cinematic technique of rear projection. As dark areas of the image may appear invisible, the image may be more realistic than on a projection screen, although it is still not volumetric. Looking directly at the display, one would also be looking into the projector’s light source. The necessity of an oblique viewing angle (to avoid looking into the projector’s light source) may be a disadvantage. Heliodisplay can work as a free-space touchscreen when connected to a PC by a USB cable. A PC sees the Heliodisplay as a pointing device, like a mouse. With the supplied software installed, one can use a finger, pen, or another object as cursor control and navigate or interact with simple content. The mist is formed by a series of metal plates, and the original Heliodisplay could run for several hours on one litre of tap water. 2008 model Heliodisplays use 80 mml to 120 ml of water per hour, depending on screen size and user settings, and can be built with any size water tank. The Heliodisplay was invented by Chad Dyner, who built it as a five-inch prototype in his apartment before patenting the free-space display technology, and founding IO2 Technology LLC to further develop the product.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.
 Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Issues of Routing IN VANET

ABSTRACT

Vehicular Ad Hoc Network (VANET) is a sub class of mobile ad hoc networks. VANET provides wireless communication among vehicles and vehicle to road side equipments. The communication between vehicles is used for safety, comfort and for entertainment as well. The performance of communication depends on how better the routing takes place in the network. Routing of data depends on the routing protocols being used in network. In this study different ad hoc routing protocols for VANET are studied. The main aim of this study is to identify which ad hoc routing method has better performance in highly mobile environment of VANET. To measure the performance of routing protocols in VANET, two different scenarios i.e. city and highway are considered. Routing protocols were selected carefully after carrying out literature review. The selected protocols were then evaluated through simulation in terms of performance metrics i.e. throughput and packet drop. After simulation results, MATLAB can be used to plot the graph to compare the results of selected routing protocols with each other.

From the results, it is observed that A-STAR shows better performance in terms of high throughput and low packet drop as compared to AODV and GPSR in city environment, while GPSR shows better performance as compared to AODV in both highway and city environment of VANET. Based on the results of performance metrics in different environments of VANET, it is realized that position based routing method of VANET outperformed the traditional ad hoc topology based routing. In VANET the protocol performance depends on vehicle speed, driving environment etc. that may vary from one environment of network to another.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Touch Screens With Feelings

ABSTRACT

This seminar includes the theory, design and construction of a haptic display for creating texture sensations through variations in surface friction. Ultra sonic frequency, low amplitude vibrations between two flat plates have been shown to create a squeeze film of air between the two plate surfaces thereby reducing the friction. Here, it is shown that a reduction of friction will also occur between a human finger and a vibrating plate. Thus, a vibrating plate can serve as a haptic interface. The amplitude of vibration can also be correlated to the amount of friction reduction the plate and the finger. Varying the surface friction between the finger and the haptic interface is a way of indirectly controlling shear forces on the finger during active exploration. Using finger position and velocity feedback on the display allows for the creation of spatial texture sensations.

If you are interested in this seminar topic, Click here to know
how to get the full report. * conditions apply
  • © 2008 – 2013 seminars4you,

Follow

Get every new post delivered to your Inbox.

Join 1,341 other followers