Skinput

ABSTRACT

Skinput is an input technology that uses bio-acoustics sensing to localize finger taps on the skin. When augmented with a pico projector, the device can provide a direct manipulation, graphical user interface on the body. The technology was developed by Chris Harrison, Desney Tan and Dan Morris at Microsoft Research’s Computational User experience Group.

Skinput represents one way to decouple input from electronic devices with the aim of allowing devices to become smaller without simultaneously shrinking the surface area on which input can be performed. While other systems, like Sixth sense have attempted this with computer vision, Skinput employs acoustics, which take the advantage of the human body’s natural sound conductive properties. This allows the body to be annexed as an input surface without the need for the skin to be invasively instrumented with sensors, tracking, markers, or other items.

If you are interested in this seminar topic, Click here to know
how to get the full report. * conditions apply

Heliodisplay

ABSTRACT

The Heliodisplay is a free-space display developed by IO2 Technology. A projector is focused onto a layer of mist in mid-air, resulting in a two-dimensional display that appears to float. This is similar in principle to the cinematic technique of rear projection. As dark areas of the image may appear invisible, the image may be more realistic than on a projection screen, although it is still not volumetric. Looking directly at the display, one would also be looking into the projector’s light source. The necessity of an oblique viewing angle (to avoid looking into the projector’s light source) may be a disadvantage. Heliodisplay can work as a free-space touchscreen when connected to a PC by a USB cable. A PC sees the Heliodisplay as a pointing device, like a mouse. With the supplied software installed, one can use a finger, pen, or another object as cursor control and navigate or interact with simple content. The mist is formed by a series of metal plates, and the original Heliodisplay could run for several hours on one litre of tap water. 2008 model Heliodisplays use 80 mml to 120 ml of water per hour, depending on screen size and user settings, and can be built with any size water tank. The Heliodisplay was invented by Chad Dyner, who built it as a five-inch prototype in his apartment before patenting the free-space display technology, and founding IO2 Technology LLC to further develop the product.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.
 Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

Issues of Routing IN VANET

ABSTRACT

Vehicular Ad Hoc Network (VANET) is a sub class of mobile ad hoc networks. VANET provides wireless communication among vehicles and vehicle to road side equipments. The communication between vehicles is used for safety, comfort and for entertainment as well. The performance of communication depends on how better the routing takes place in the network. Routing of data depends on the routing protocols being used in network. In this study different ad hoc routing protocols for VANET are studied. The main aim of this study is to identify which ad hoc routing method has better performance in highly mobile environment of VANET. To measure the performance of routing protocols in VANET, two different scenarios i.e. city and highway are considered. Routing protocols were selected carefully after carrying out literature review. The selected protocols were then evaluated through simulation in terms of performance metrics i.e. throughput and packet drop. After simulation results, MATLAB can be used to plot the graph to compare the results of selected routing protocols with each other.

From the results, it is observed that A-STAR shows better performance in terms of high throughput and low packet drop as compared to AODV and GPSR in city environment, while GPSR shows better performance as compared to AODV in both highway and city environment of VANET. Based on the results of performance metrics in different environments of VANET, it is realized that position based routing method of VANET outperformed the traditional ad hoc topology based routing. In VANET the protocol performance depends on vehicle speed, driving environment etc. that may vary from one environment of network to another.

If you are you interested in this seminar topic, mail to us to get

the full report * of the seminar topic.

Mail ID: - contact4seminars@gmail.com 

* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)

  • © 2008 – 2013 seminars4you,

  • All rights reserved.