Smart Cards

ABSTRACT


In this seminar, is giving some basic concepts about smart cards. The physical and logical structure of the smart card and the corresponding security access control has been discussed in this seminar. It is believed that smart cards offer more security and confidentiality than the other kinds of information or transaction storage. Moreover, applications applied with smart card technologies are illustrated which demonstrate smart card is one of the best solutions to provide and enhance their system with security and integrity. The seminar also covers the contactless type smart card briefly. Different kinds of scheme to organise and access of multiple application smart card are discussed. The first and second schemes are practical and workable on these days, and there is real applications developed using those models. For the third one, multiple independent applications in a single card, there is still a long way to go to make it becomes feasible because of several reasons.

At the end of the paper, an overview of the attack techniques on the smart card is discussed as well. Having those attacks does not mean that smart card is unsecure. It is important to realise that attacks against any secure systems are nothing new or unique. Any systems or technologies claiming 100% secure are irresponsible. The main consideration of determining whether a system is secure or not depends on whether the level of security can meet the requirement of the system.



If you are you interested in this seminar topic, mail to us to get
the full report * of the seminar topic.
Mail ID: - contact4seminars@gmail.com 
* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)



Shallow Water Acoustic Networks

ABSTRACT


In the last two decades, underwater acoustic communications has experienced significant progress. The traditional approach for ocean-bottom or ocean-column monitoring is to deploy oceanographic sensors, record the data, and recover the instruments. But this approach failed in real-time monitoring. The ideal solution for real-time monitoring of selected ocean areas for long periods of time is to connect various instruments through wireless links within a network structure. Basic underwater acoustic networks are formed by establishing bidirectional acoustic communication between nodes such as autonomous underwater vehicles (AUVs) and fixed sensors. The network is then connected to a surface station, which can further be connected to terrestrial networks such as the Internet.



If you are you interested in this seminar topic, mail to us to get
the full report * of the seminar topic.
Mail ID: - contact4seminars@gmail.com 
* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)



10 GB ETHERNET

ABSTRACT


Since its inception at Xerox Corporation in the early 1970s, Ethernet has been the dominant networking protocol. Of all current networking protocols, Ethernet has, by far, the highest number of installed ports and provides the greatest cost performance relative to Token Ring, Fiber Distributed Data Interface (FDDI), and ATM for desktop connectivity. Fast Ethernet, which increased Ethernet speed from 10 to 100 megabits per second (Mbps), provided a simple, cost-effective option for backbone and server connectivity.

10 Gigabit Ethernet builds on top of the Ethernet protocol, but increases speed tenfold over Fast Ethernet to 10000 Mbps, or 10 gigabit per second (Gbps). This protocol, which was standardized in august 2002, promises to be a dominant player in high-speed local area network backbones and server connectivity. Since10 Gigabit Ethernet significantly leverages on Ethernet, customers will be able to leverage their existing knowledge base to manage and maintain gigabit networks.

The purpose of this technology brief is to provide a technical overview of 10 Gigabit Ethernet. This paper discusses:

• The architecture of the Gigabit Ethernet protocol, including physical interfaces, 802.3x flow control, and media connectivity options
• The 10 Gigabit Ethernet standards effort and the timing for Gigabit Ethernet
• 10 Gigabit Ethernet topologies
• Migration strategies to 10 Gigabit Ethernet



If you are you interested in this seminar topic, mail to us to get
the full report * of the seminar topic.
Mail ID: - contact4seminars@gmail.com
* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)



Windows DNA

ABSTRACT


Microsoft Windows Distributed interNet Applications Architecture (Windows DNA) is the application development model for the Windows platform. Windows DNA specifies how to: develop robust, scalable, distributed applications using the Windows platform; extend existing data and external applications to support the Internet; and support a wide range of client devices maximizing the reach of an application. Developers are free from the burden of building or assembling the required infrastructure for distributed applications and can focus on delivering business solutions.

Windows DNA addresses requirements at all tiers of modern distributed applications: presentation, business logic, and data. Like the familiar PC environment, Windows DNA enables developers to build tightly integrated applications by accessing a rich set of application services in the Windows platform using a wide range of familiar tools. These services are exposed in a unified way through the Component Object Model (COM). Windows DNA provides customers with a roadmap for creating successful solutions that build on their existing computing investments and will take them into the future. Using Windows DNA, any developer will be able to build or extend existing applications to combine the power and richness of the PC, the robustness of client/server computing, and the universal reach and global communications capabilities of the Internet.



If you are you interested in this seminar topic, mail to us to get
the full report * of the seminar topic.
Mail ID: - contact4seminars@gmail.com
* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)



Inferno OS

ABSTRACT


Inferno is an operating system for creating and supporting distributed services .The name of the operating system and of its associated programs, as well as of the company Vita Nuova Holding that produces it, were inspired by the litrary works of Dante Alighieri, particularly the Divine Comedy
Inferno runs in hosted mode under several different operating systems or natively on a range of hardware architectures. In each configuration the operating system presents the same standard interfaces to its applications. A communications protocol called Styx is applied uniformly to access both local and remote resources.
Applications are written in the type-safe Limbo programming language, whose binary representation is identical over all platforms.



If you are you interested in this seminar topic, mail to us to get
the full report * of the seminar topic.
Mail ID: - contact4seminars@gmail.com
* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)



TRACKING AND POSITIONING OF MOBILE PHONES

ABSTRACT


Mobile positioning technology has become an important area of research, for emergency as well as for commercial services. Mobile positioning in cellular networks will provide several services such as, locating stolen mobiles, emergency calls, different billing tariffs depending on where the call is originated, and methods to predict the user movement inside a region. The evolution to location-dependent services and applications in wireless systems continues to require the development of more accurate and reliable mobile positioning technologies.
The major challenge to accurate location estimation is in creating techniques that yield acceptable performance when the direct path from the transmitter to the receiver is intermittently blocked. This is the Non-Line-Of-Sight (NLOS) problem, and it is known to be a major source of error since it systematically causes mobile to appear farther away from the base station (BS) than it actually is, thereby increasing the positioning error. In this seminar, I present a simple method for mobile telephone tracking and positioning with high accuracy.
This presents the location of a mobile telephone by drawing a plurality of circles with the radii being the distances between a mobile telephone and a several base stations (it will be found using Time Of Arrival (TOA)) and the base stations at their centers, and using location tracking curves connecting the intersection points between each circle pair instead of the common chords defined by the circles. We use location tracking curves connecting the intersection points of the two circles which will be drawn by ordinary TOA method, instead of the common chord as in TDOA.



If you are you interested in this seminar topic, mail to us to get
the full report * of the seminar topic.
Mail ID: - contact4seminars@gmail.com
* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)



Intelligent Network

ABSTRACT


The Intelligent Network, typically stated as its acronym IN, is a network architecture intended both for fixed as well as mobile telecom networks. It allows operators to differentiate themselves by providing value-added services in addition to the standard telecom services such as PSTN, ISDN and GSM services on mobile phones.
In IN, the intelligence is provided by network nodes owned by telecom operators, as opposed to solutions based on intelligence in the telephone equipment, or in Internet servers provided by any part.
IN is based on the Signaling System #7 (SS7) protocol between telephone network switching centers and other network nodes owned by network operators.



If you are you interested in this seminar topic, mail to us to get
the full report * of the seminar topic.
Mail ID: - contact4seminars@gmail.com
* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)



Session Initiation Protocol (SIP)

ABSTRACT


Session Initiation Protocol (SIP) is a protocol developed by IETF MMUSIC Working Group and proposed standard for initiating, modifying, and terminating an interactive user session that involves multimedia elements such as video, voice, instant messaging, online games, and virtual reality.
SIP clients traditionally use TCP and UDP port 5060 to connect to SIP servers and other SIP endpoints. SIP is primarily used in setting up and tearing down voice or video calls. However, it can be used in any application where session initiation is a requirement. These include, Event Subscription and Notification, Terminal mobility and so on. There are a large number of SIP-related RFCs that define behavior for such applications. All voice/video communications are done over RTP.
A motivating goal for SIP was to provide a signaling and call setup protocol for IP-based communications that can support a superset of the call processing functions and features present in the public switched telephone network (PSTN).
SIP enabled telephony networks can also implement many of the more advanced call processing features present in Signalling System 7 (SS7), though the two protocols themselves are very different. SS7 is a highly centralized protocol, characterized by highly complex central network architecture and dumb endpoints (traditional telephone handsets). SIP is a peer-to-peer protocol.



If you are you interested in this seminar topic, mail to us to get
the full report * of the seminar topic.
Mail ID: - contact4seminars@gmail.com
* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)



INTERNET PROTOCOL TELEVISION (IPTV)

ABSTRACT


IPTV (Internet Protocol Television) is a system where a digital television service is delivered by using Internet Protocol over a network infrastructure, which may include delivery by a broadband connection. A general definition of IPTV is television content that, instead of being delivered through traditional broadcast and cable formats, is received by the viewer through the technologies used for computer networks.

For residential users IPTV is often provided in conjunction with Video on Demand and may be bundled with Internet services such as Web access and VoIP.The commercial building of IPTV, VoIP and Internet access is referred to as ”triple play” service(adding mobility is called “Quadruple play”).IPTV is typically supplied by a service provider using a closed network infrastructure. This closed network approach is in competition with the delivery of TV content over the public internet, called Internet Television. In businesses, IPTV may be used to deliver television content over cooperate LANs.

By contrast “Internet TV “generally refers to transport streams sent over IP networks and proprietary variants as used by websites such as YouTube are now rarely considered to be IPTV services. The IP based platform offers significant advantages, including the ability to integrate television with other IP-based services like high speed Internet access and VoIP.

A switched IP network also allows for the delivery of significantly more content and functionality. In a typical TV or satellite network, using broadcast video technology, all the content constantly flows downstream to each customer, and the customer switches the content at the set top box. The customer can select from as many choices as the telecoms, cable or Satellite Company can stuff into the “pipe” flowing into the home. A switched IP network works differently. Content remains in the network, and only the content the customer selects is sent into the customer’s home. That frees up the bandwidth, and the customer’s choice is less restricted by the size of the “pipe” into the home. This also implies that the customer’s privacy could be compromised to a greater extent than is possible with traditional TV or satellite networks.



If you are you interested in this seminar topic, mail to us to get
the full report * of the seminar topic.
Mail ID: - contact4seminars@gmail.com
* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)



WiMAX

ABSTRACT


WiMAX, meaning Worldwide Interoperability for Microwave Access, is a telecommunications technology that provides wireless transmission of data using a variety of transmission modes, from point-to-point links to portable internet access[citation needed]. The technology provides up to 75 Mbit/s symmetric broadband speed without the need for cables. The technology is based on the IEEE 802.16 standard (also called Broadband Wireless Access). The name “WiMAX” was created by the WiMAX Forum, which was formed in June 2001 to promote conformity and interoperability of the standard. The forum describes WiMAX as “a standards-based technology enabling the delivery of last mile wireless broadband access as an alternative to cable and DSL”.
The terms “fixed WiMAX”, “mobile WiMAX”, “802.16d” and “802.16e” are frequently used incorrectly Correct definitions are the following:
• 802.16-2004 is often called 802.16d, since that was the working party that developed the standard. It is also frequently referred to as “fixed WiMAX” since it has no support for mobility.
• 802.16e-2005 is an amendment to 802.16-2004 and is often referred to in shortened form as 802.16e. It introduced support for mobility, amongst other things and is therefore also known as “mobile WiMAX”.



If you are you interested in this seminar topic, mail to us to get
the full report * of the seminar topic.
Mail ID: - contact4seminars@gmail.com
* conditions apply

– OR –

Click here for Quick Contact (Request for Topics)



  • © 2008 – 2013 seminars4you,

  • All rights reserved.